

# **Willowbrook School Calculation Policy**

Last updated: 2021

# Contents

- 1. Addition progression
- 2. <u>Subtraction progression</u>
- 3. <u>Times-tables progression</u>
- 4. <u>Multiplication progression</u>
  - 5. <u>Division progression</u>

#### **Addition Progression**







| 5/6 | Add<br>numbers<br>with<br>more<br>than 4-<br>digits | $\begin{array}{c} ? \\ \hline 104,328 \\ \hline 104,328 \\ \hline 61,731 \\ \hline 104,328 \\ \hline 61,731 \\ \hline 61,731 \\ \hline 104,328 + 61,731 = 166,059 \\ \hline \end{array}$                                                                                        |                                               | 1<br>+<br>1                                                     | 0<br>6<br>6                                                    | 4<br>1<br>6<br>1                                                                                        | 3<br>7<br>0                                                            | 2<br>3<br>5                                     | 8<br>1<br>9                                                       |                                   | At this stage,<br>children should be<br>encouraged to<br>work in the<br>abstract, using this<br>method to add<br>larger numbers<br>efficiently.                                                                                                                                                                               |
|-----|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Add<br>numbers<br>with up<br>to 3dp                 | $2.41 \qquad 3.65 \qquad 2.41 \qquad 3.65 \qquad 4.41 = 6.06$ $) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$ | Whe<br>it's i<br>valu<br>worl<br>of th<br>ten | en chilo<br>mporta<br>e of the<br>k in the<br>ne deci<br>hundre | dren fir<br>ant the<br>e colur<br>e same<br>mal. E.<br>edths m | st start<br>y unde<br>nns to<br>way as<br>g. ten t<br>nake a<br><b>3</b><br><b>F 2</b><br><b>6</b><br>1 | addin<br>rstand<br>the rig<br>the co<br>renths<br>tenth,<br>.65<br>.41 | g with<br>that th<br>olumns<br>make a<br>and so | decima<br>ne plac<br>he dec<br>to the<br>to the<br>a whole<br>on. | als,<br>e<br>imal<br>e left<br>e, | It is very<br>important children<br>see that the<br>decimal point is in<br>a fixed position.<br>When adding<br>decimals with<br>different amounts<br>of digits, the<br>decimals should<br>always align.<br>Children should<br>be encouraged to<br>use mental<br>methods when it<br>is efficient to do<br>so, e.g. 4.35 + 1.2. |

#### Subtraction Progression

| Year<br>group | Skill                                       | Visuals / concrete apparatus                                                                                                  | Written algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes/guidance                                                                                                                                                                                                                                                                                       |
|---------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | Subtract<br>1-digit<br>numbers<br>within 10 | 7 - 3 = 4 $7 - 3 = 4$ $7 - 3 = 4$                                                                                             | In Year 1, children will do lots of practical work using the kind of equipment pictured.<br><b>Part-whole idea</b><br>Children need to understand that when a part is missing, it can be found by<br>subtracting the <i>known</i> part from the whole. ? 3<br>When solving simple problems, children $7 - 3 = 4$<br>can learn to take away using a pre-<br>prepared number track (and then on number lines as the year progresses).<br>1 2 3 4 5 6 7 8 9 10<br><b>Difference</b><br>Children should see that the 'gap'<br>between the whole and the known part<br>represents the value we are missing. This develops pupils'<br>understanding of the inverse relationship of addition and subtraction | From a fairly early<br>stage, children can<br>compare the<br>efficiency of<br>taking away<br>versus finding the<br>difference. We<br>want them to<br>develop an<br>understanding<br>that difference is<br>much more<br>efficient when the<br>numbers in the<br>subtraction are of<br>a similar size. |
|               | Subtract<br>1-digit<br>numbers<br>to 20     | 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 $14 - 6 = 8$ $4 2 - 2 - 4$ $6 - 4 2$ $14 - 6 = 8$ $4 2 - 2$ $6 - 14$ $6 - 8$ $8$ | From a young age, we want children to learn to<br>bridge through multiples of ten when subtracting,<br>developing efficient mental methods.<br>One way to model the recording of this is as follows:<br>14 - 6 = 8<br>4 2<br>These jumps can also be shown on a number-line:<br>-2 - 4<br>Over time, children can learn to draw out simple<br>number lines of their own when doing this.                                                                                                                                                                                                                                                                                                              | Bridging through<br>ten relies on strong<br>number bond<br>knowledge.<br>Children need to be<br>explicitly taught to<br>use a mental<br>method (finding the<br>difference) when<br>subtracting with<br>numbers of a similar<br>size, e.g. 17-15 = 2.                                                 |



| 4   | Subtract<br>numbers<br>with up<br>to 4<br>digits            | 4,357 $4,357$ $2,735$ $2,735$ $4,357$ $4,357$ $-2735$ $1622$ $4,357 - 2,735 = 1,622$ $10000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $0000$ $000$ $000$ $000$ $000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | During Year 4, the formal algorithm for<br>subtraction is used to solve 4-digit subtractions,<br>but still alongside practical equipment and/or<br>visuals to encourage understanding -<br>particularly of exchanging and regrouping.<br>$\frac{\overset{3}{4}\overset{1}{3}57}{-2735}$ $\underline{-2735}$ 1622                      | Children should<br>make rough<br>estimates before<br>calculating.<br>Careful recording<br>of calculations<br>becomes more<br>important as<br>numbers become<br>larger.                                                                                                                                                                                        |
|-----|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5/6 | Subtract<br>numbers<br>with<br>more<br>than 4<br>digits     | 294,382<br>(182,501)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(182,501)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(294,382)<br>(2 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                | At this stage,<br>children should be<br>encouraged to work<br>in the abstract,<br>using this method to<br>subtract larger<br>numbers efficiently.                                                                                                                                                                                                             |
|     | Subtract<br>numbers<br>with up<br>to 3<br>decimal<br>places | $\frac{2.7}{5.43}$ $\frac{5.43}{2.7}$ $\frac{4}{5.43}$ $\frac{-2.7}{2.73}$ $\frac{5.43}{2.7}$ $\frac{5.43}{2.7}$ $\frac{2.7}{2.73}$ $\frac{5.43}{2.7}$ $\frac{2.7}{2.73}$ $\frac{5.43 - 2.7 = 2.73}$ $\frac{1000}{1000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | When children first start subtracting with decimals, it's important they understand that the place value of the columns to the right of the decimal work in the same way as the columns to the left of the decimal. E.g. ten tenths make a whole, ten hundredths make a tenth, and so on.<br>$ \frac{45.43}{5.43} $ $ -2.7 $ $ 2.73 $ | It is very important<br>children see that the<br>decimal place is in a<br>fixed position and<br>should always align<br>with the numbers in<br>the calculation.<br>When adding<br>decimals with<br>different amounts of<br>digits, the decimals<br>should always align.<br>Children should use<br>mental methods<br>where more<br>efficient, e.g. 6.75-<br>2.5 |

#### **Multiplication (times-tables progression)**

How do we develop pupils' tables knowledge?

Pupils' times-table knowledge is developed through daily counting, which extends to more rapid recall from Y2 onwards, once children become more familiar with the times table they are learning. Teachers will do a lot of counting stick work, as well as using the other visuals/concrete apparatus pictured below. Children are encouraged to spot patterns, and in doing so, they become familiar with the mathematical structure underlying each times table. Children are encouraged to make links between tables which are doubles/halves of each other (e.g. 10s and 5s, 3s and 6s). Teachers follow a termly planner for when each table is taught during the year (see Third Space Learning Planner). The automaticity of these facts is also supported by the use of 'Times Table Rockstars'.





## **Multiplication Progression**

| Year<br>group | Skill                                               | Visuals / concrete apparatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Written algorithms                                                                                                                                                                                                                                                                                                             | Notes/guidance                                                                                                                                                                                                                                            |
|---------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | Solve 1-step<br>problems<br>using<br>multiplication | i = 1 $i = 1$ $i =$ | Children do not require a written algorithm at<br>this stage as the size of numbers being used<br>will be mainly within 20. A number line can be<br>used informally to support their mental<br>strategies of repeated addition:                                                                                                | Children should<br>be using their<br>knowledge of<br>10s, 2s and 5s<br>within the<br>problems that<br>they solve.                                                                                                                                         |
| 2             | Solve 1-step<br>problems<br>using<br>multiplication | I put 2 sweets into 5 different party bags.<br>How many sweets have I used altogether?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number lines can continue to be used to<br>support pupils' mental methods in Year 2.<br>Children may start to draw their own lines<br>rather than needing to use pre-prepared<br>examples.<br>The main difference in Year 2 is that children<br>will begin to record multiplication calculations<br>using appropriate symbols. | Arrays are a key<br>model for<br>developing pupils'<br>conceptual<br>understanding of<br>the commutative<br>rule. The use of<br>equal groups<br>supports pupils'<br>understanding of<br>the inverse<br>relationship of<br>multiplication and<br>division. |



| 4 | Use formal<br>algorithm for<br>2-digit x 1-<br>digit numbers<br>and extend to<br>3-digit x 1-<br>digit numbers.                                                                       | X<br>4<br>X<br>4<br>4                                                                            |                                                                | Without regrouping:         40       5         10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |                                                                                                                                       | H<br>2<br>×<br>9<br>1<br>The visuals (left) are not a meth<br>visualising what is happening v<br>algorithm. When using these v<br>explicitly show children how gr<br>regrouped into tens, and grou<br>example, it's good for children<br>gives us the same answer as w<br>using the place value columns<br>algorithm. Regrouping while w<br>process of adding the total up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T       O         4       5         4       5         4       4         8       O         2       0         and, but a way of vithin the written issuals, teachers must oups of ones are os of tens into 100. In this to see how 800+160+20 hen we've regrouped in the short written e calculate just makes the more efficient. | Examples<br>chosen by<br>teachers should<br>give children<br>lots of<br>opportunities to<br>apply the tables<br>they've been<br>learning in class.                                                                                              |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Use formal<br>algorithm for:<br>4-digit x 1-<br>digit,<br>4-digit x 2-<br>digit,<br>2-digit x 2-<br>digit,<br>3-digit x 2-<br>digit, and<br>whole<br>numbers x<br>decimal<br>numbers. | By Year 5/6, chi<br>algorithms for w<br>value cour<br>4-digit x 1-d<br>x 1 8 2<br>x 5 4 7<br>2 1 | Idren's co<br>ritten mul<br>nters) that<br>igit<br>6<br>3<br>8 | proceptual knowledge of p<br>ltiplication without need<br>t was used throughout lo<br>$4-digit \times 2-digit$ $\boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lace value should be s<br>for visual representati<br>wer KS2 can still be d<br>2-digit x 2-digit<br>x 10 2 2<br>x 2<br>6 6 0<br>6 8 2 | secure enough for them to<br>ons. However, the grid reprirement of address any reserve and the grid reprirement of address any reserve and the grid reprirement of address any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress any reserve and the grid reprirement of a ddress and the | focus on the efficient<br>esentation (with place<br>nisconceptions.<br>Whole x decimals<br>$1 \ 8 \ 2 \ 6$<br>$x \ 3 \ 5 \ 4 \ 7 \ 8$<br>$2 \ 1$<br>In the example above, the<br>'3' sits in the same<br>column as the 6 tenths.<br>The key is that the                                                                         | Example<br>questions should<br>give children the<br>opportunity to<br>apply their times<br>table knowledge<br>of <u>all</u> tables.<br>As calculations<br>become<br>increasingly<br>complex,<br>children need to<br>ensure they<br>record their |
|   |                                                                                                                                                                                       |                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aecimal point stays in the same place.                                                                                                                                                                                                                                                                                          | working very<br>neatly and<br>accurately.                                                                                                                                                                                                       |

## **Division Progression**

| Year<br>group | Skill                                                                                                                                           | Visuals / concrete apparatus                                                                                                                  | Written algorithms                                                                                                                                                                                                                                                                                                                                                                                       | Notes/guidance                                                                                                                                                                                                                                            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | Solve 1-step<br>division<br>problems<br>involving<br>sharing into<br>equal groups.                                                              | 20<br>20<br>??????<br>?????<br>There are 20 apples altogether.<br>They are shared equally between 5 bags.<br>How many apples are in each bag? | Children do not require a written algorithm at<br>this stage as the size of numbers being used<br>will be mainly within 20. A number line can be<br>used informally to support their mental<br>strategies of repeated jumps:                                                                                                                                                                             | Children should<br>be using their<br>knowledge of<br>10s, 2s and 5s<br>within the<br>problems that<br>they solve.                                                                                                                                         |
|               |                                                                                                                                                 | $20 \div 5 = 4$                                                                                                                               | We do not recommend the use of repeated<br>subtraction, but rather the use of their known<br>facts/counting skills. Repeated addition can<br>help children to find total groups.                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                           |
| 2             | Solve 1-step<br>division<br>problems<br>involving<br>sharing into<br>equal groups.<br>Apply this in<br>problems<br>using known<br>tables facts. | I buy 10 sweets to share equally into 5 party<br>bags. How many will go in each bag?                                                          | Number lines can continue to be used to<br>support pupils' mental methods in Year 2.<br>Children may start to draw their own lines<br>rather than needing to use pre-prepared<br>examples. Like Y1, we recommend counting up<br>in repeated groups, rather than backwards.<br>The main difference in Year 2 is that children<br>will begin to record division calculations using<br>appropriate symbols. | Arrays are a key<br>model for<br>developing pupils'<br>conceptual<br>understanding of<br>the commutative<br>rule. The use of<br>equal groups<br>supports pupils'<br>understanding of<br>the inverse<br>relationship of<br>multiplication and<br>division. |



| <ul> <li>Use flexib<br/>partitionir<br/>as a strate<br/>for dividin<br/>larger 2-d<br/>numbers l<br/>1-digit<br/>numbers<br/>(with<br/>remainder</li> <li>Use flexib<br/>partitionir<br/>as a strate<br/>for dividin<br/>larger 2-d<br/>numbers l<br/>1-digit<br/>numbers<br/>(with<br/>remainder</li> </ul> | e<br>gy<br>gy<br>igit<br>py<br>s)<br>e<br>gy<br>gy<br>gy<br>igit<br>by<br>This visu.<br>The num<br>divided b<br>represen<br>represen | 5<br>Tens<br>Tens<br>al shows one of t<br>ber 53 is now rep<br>by 4. Because 13<br>ted by the block<br>ted in a bar: | <b>3</b> ÷ <b>4</b><br>he tens ir<br>presented<br>leaves us<br>outside o<br>5<br>13 13 | 1 = 1<br>53 being<br>as 40 +<br>with a rei<br>of the tabl<br>33<br>13 13 1 | <b>3 r1</b><br><b>Ones</b><br><b>Ones</b><br><b>g exchanged for the sector of 1, this le. This can also be</b> | en ones.<br>being<br>is | As with<br>children<br>that the<br>needs p<br>by 4, lea<br>taught t<br>them wi | the pre-<br>partition<br>avring a n<br>to put a<br>hat to d | ÷ 4<br>÷ 4<br>10<br>vious ve<br>on the c<br>ivide by<br>ing aga<br>remaind<br>n 'r' by<br>lo with t | 5<br>5<br>12<br>+ 3<br>ersion c<br>4. In this of the<br>der of 1<br>any renthem interesting the | $3$ $1$ $2$ $2 \div 4$ $3 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$ $5 = 1$ $4 = 1$ $5 = 1$ $4 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ $5 = 1$ | 3 r1<br>a r1<br>bethod,<br>wo num<br>an be d<br>en shou<br>s to ren<br>nswers. | bers<br>ove, 13<br>ivided<br>ild be<br>hind | If the division<br>applies to a word<br>problem, children<br>need to be taught<br>what to do with the<br>remainder. E.g. in<br>the word problem "4<br>people are in each<br>team, so how many<br>teams can be made<br>from 53 children?"<br>then the answer is<br>13, not 13r1. If the<br>problem was<br>something like "The<br>driver can take 4<br>children at a time,<br>so how many trips<br>will he need to do<br>for 53 children?"<br>then the answer<br>would be 14, so that<br>there isn't a child<br>left behind!<br>Examples chosen<br>should give children<br>opportunities to<br>apply the tables<br>they've been<br>learning in class |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance t<br>short writt<br>method o<br>division<br>(During<br>Spring ter<br>involving<br>digit<br>dividends                                                                                                                                                                                                 | o Chilc<br>en mode<br>f<br><mark>m),</mark><br>3-                                                                                    | Iren should be t<br>Is. This link help<br>8                                                                          | sught to<br>s when<br>344 ÷ 4<br>84<br>?                                               | 4 = <b>21</b><br>44<br>4<br>2                                              | e problems usin<br>fractions of a nu<br>1                                                                      | g bar<br>nber.          |                                                                                |                                                             | 4                                                                                                   | 1<br>5<br>2<br>8                                                                                                                    | 3<br>1 <sub>2</sub><br>1<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>1 <sub>6</sub>                                                            |                                             | Example<br>questions should<br>give children the<br>opportunity to<br>apply their times<br>table knowledge<br>of <u>all</u> tables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 5 | Consolidate<br>short written<br>method and<br>advance to 4-<br>digit dividends<br>divided by 1<br>digit divisors. | Children should be t<br>models. This link hel<br><b>8,532</b>                                                                                                                                                               | aught to<br>ps when<br>÷ <b>2</b> =                                                      | visualise<br>finding fra<br><b>4,266</b>                                                                                          | problems using b<br>actions of a numl<br><b>8,532</b><br>? ?                                                                                                           | bar<br>ber.                           | 2                                                   | 4<br>8                                                                     | 2<br>5                                                                                                                          | 6<br>1 <sub>3</sub>                                                                                                                                                                                                                 | 6<br>1 <sub>2</sub> | Example questions<br>should give<br>children the<br>opportunity to<br>apply their times<br>table knowledge<br>of <u>all</u> tables.                                                                                                                                          |
|---|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | Advance to<br>two-digit<br>divisors.                                                                              | Whether children u<br>they need to be ta<br>divisor ahead of ca<br>partitioning if the r<br>count in mentally.<br>E.g. If solving 1257<br>like this if children<br><b>30</b><br>60<br>90<br>120<br>120<br>150<br>180<br>210 | ise the sught to<br>lculation<br>number<br>÷ 35, n<br>find it h<br>+<br>+<br>+<br>+<br>+ | short or lo<br>write out<br>g. They ca<br>is a bit av<br>nultiples o<br>elpful to<br><b>5</b><br>10<br>15<br>20<br>25<br>30<br>35 | onger division n<br>multiples of the<br>an do this by us<br>wkward for then<br>of 35 can be wri<br>do so:<br>= 35<br>= 70<br>= 105<br>= 140<br>= 175<br>= 210<br>= 245 | nethod,<br>e<br>sing<br>n to<br>itten | More detail on<br>https://thirdsp.<br>method-ks2-st | Sh<br>43:<br>12<br>7,33:<br>0<br>15<br>7<br>Lc<br>432<br>1 5<br>1 5<br>1 5 | ort meth<br>$2 \div 12 =$<br>0<br>4<br>$5 \div 15 =$<br>4<br>7<br>3<br>0<br>1 3<br>1 2<br>1<br>1<br>1<br>nod can b<br>ng.com/bl | od:<br>3 6<br>3 6<br>4 3 7 2<br>4 3 7 2<br>4 3 7 2<br>4 3 7 2<br>3 489<br>8 9<br>$13_3 13_5$<br>on:<br>28.8<br>$8 \cdot 8$<br>$2 \cdot 0$<br>4 2<br>0<br>2 0<br>0<br>2 0<br>0<br>2 0<br>0<br>2 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ere:<br>            | Children need to<br>be taught to make<br>decisions about<br>when to stick with<br>the short written<br>method (e.g. when<br>divisor is a smaller<br>2-digit number)<br>and when to use<br>long-division<br>method (larger<br>divisors, likely to<br>give big<br>remainders). |